Rocket Tests Move NASA Closer To Its Lunar Vision | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Thu, Jul 12, 2007

Rocket Tests Move NASA Closer To Its Lunar Vision

CECE Throttleable Rocket Engine

NASA tells ANN a liquid oxygen-hydrogen pump fed engine, developed to demonstrate advanced rocket technologies for future space vehicles, achieved a major technical milestone recently in throttling capability. The engine was designed to demonstrate successful throttling from full power down to 10 percent of its thrust. This flexibility to control the flow of fuel through an engine is necessary for a lunar lander, allowing the spacecraft ample propulsion, yet enough control to land gently on the moon's surface.

The Common Extensible Cryogenic Engine -- CECE for short -- was built off the design of the Pratt & Whitney Rocketdyne RL10 engine. which has a proven history of performance. CECE is fueled by a mixture of liquid oxygen and liquid hydrogen and generates 13,800 pounds of thrust.

Using liquid hydrogen and oxygen in rockets will provide major advantages for landing astronauts on the moon. Hydrogen is very light but has about 40 percent more performance (force on the rocket per pound of propellant) than other rocket fuels, enabling lower vehicle mass and a larger payload than with the same amount of conventional propellants.

"This technology has the potential to be the backbone of a deep-throttling, reliable, reusable engine for use across most human and robotic missions," said Tony Kim, NASA's Deep Throttling Engine Project Manager. "Through two rounds of testing, the CECE team has accomplished quite a bit, but we still have a long way to go before this technology will be ready for full scale development."

Engineers have added throttling ability by using a bypass valve to direct hydrogen around the turbopump that drives propellant into the combustion chamber. Through two rounds of hot-fire testing, the CECE team has demonstrated throttling operability to 9.5 percent power, but operation with stable combustion to 20 percent power, or a 5-to-1 throttling ratio. Engine performance data collected during 2098 seconds of hot run time will be analyzed to support future development decisions.

Looking forward, the team will push CECE to lower throttle levels. Currently, at lower throttle levels, oxygen vapor forms on the inner injector plate and causes the oxygen flow to fluctuate. This triggers pressure oscillations in the engine called "chugging."

Chugging may not be a problem for the engine itself, but the vibrations it causes has the potential to resonate with the structure of the rocket and could cause damage. The next tests will determine whether, with modifications to the injector and valves, CECE can demonstrate stable combustion down to 10 percent power, a 10-to-1 throttle ratio.

The CECE collaboration includes engineers from Marshall Space Flight Center and Glenn Research Center joined with Pratt & Whitney Rocketdyne.

NASA has invested in CECE technology since 2005. The aim is to achieve a more reliable, robust and less expensive rocket engine ready in 2018 for America's next moon landing.

"This CECE testing has moved us another step closer in providing risk mitigation for designing and building a future lunar lander," said Mark Klem, NASA's PCAD Project Manager.

FMI: www.nasa.gov/centers/marshall/

Advertisement

More News

ANN's Daily Aero-Term (04.25.24): Airport Rotating Beacon

Airport Rotating Beacon A visual NAVAID operated at many airports. At civil airports, alternating white and green flashes indicate the location of the airport. At military airports>[...]

ANN's Daily Aero-Linx (04.25.24)

Aero Linx: Fly for the Culture Fly For the Culture, Inc. is a 501(c)(3) non-profit organization that serves young people interested in pursuing professions in the aviation industry>[...]

Klyde Morris (04.22.24)

Klyde Is Having Some Issues Comprehending The Fed's Priorities FMI: www.klydemorris.com>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne 04.22.24: Rotor X Worsens, Airport Fees 4 FNB?, USMC Drone Pilot

Also: EP Systems' Battery, Boeing SAF, Repeat TBM 960 Order, Japan Coast Guard H225 Buy Despite nearly 100 complaints totaling millions of dollars of potential fraud, combined with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC