A Jet Stream At The Core Of The Earth | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.14.24

Airborne-Unlimited-05.15.24 Airborne-AffordableFlyers-05.16.24

Airborne-Unlimited-05.17.24

Sun, Dec 25, 2016

A Jet Stream At The Core Of The Earth

ESA Makes Discovery Using Earth-Observing Satellites

We would normally associate jet streams with the weather but, thanks to ESA’s magnetic field mission, scientists have discovered a jet stream deep below Earth’s surface – and it’s speeding up.

Launched in 2013, the trio of Swarm satellites are measuring and untangling the different magnetic fields that stem from Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere. Together, these signals form the magnetic field that protects us from cosmic radiation and charged particles that stream towards Earth in solar winds.

Measuring the magnetic field is one of the few ways we can look deep inside our planet. As Chris Finlay from the Technical University of Denmark noted, “We know more about the Sun than Earth’s core because the Sun is not hidden from us by 3000 km of rock.” The field exists because of an ocean of superheated, swirling liquid iron that makes up the outer core. Like a spinning conductor in a bicycle dynamo, this moving iron creates electrical currents, which in turn generate our continuously changing magnetic field.

Tracking changes in the magnetic field can, therefore, tell researchers how the iron in the core moves. The accurate measurements by the unique constellation of Swarm satellites allow the different sources of magnetism to be separated, making the contribution from the core much clearer.

A paper published today in Nature Geoscience describes how Swarm’s measurements have led to the discovery of a jet stream in the core.

Phil Livermore from the University of Leeds in the UK and lead author of the paper said, “Thanks to the mission we have gained new insights into the dynamics of Earth’s core and it’s the first time this jet stream has been seen, and not only that – we also understand why it’s there.”

One feature is a pattern of ‘flux patches’ in the northern hemisphere, mostly under Alaska and Siberia. “These high-latitude flux patches are like bright spots in the magnetic field and they make it easy to see changes in the field,” explained Dr. Livermore.

Swarm reveals that these changes are actually a jet stream moving at more than 40 km (approx. 25 miles) a year – three times faster than typical outer-core speeds and hundreds of thousands of times faster than Earth’s tectonic plates move. “We can explain it as acceleration in a band of core fluid circling the pole, like the jet stream in the atmosphere,” said Dr Livermore.

So, what is causing the jet stream and why is it speeding up so quickly?

The jet flows along a boundary between two different regions in the core. When material in the liquid core moves towards this boundary from both sides, the converging liquid is squeezed out sideways, forming the jet. “Of course, you need a force to move the fluid towards the boundary,” says Prof. Rainer Hollerbach, also from the University of Leeds. “This could be provided by buoyancy, or perhaps more likely from changes in the magnetic field within the core.”

As for what happens next, the Swarm team is watching and waiting.

Rune Floberghagen, ESA’s Swarm mission manager, added, “Further surprises are likely. The magnetic field is forever changing, and this could even make the jet stream switch direction. “This feature is one of the first deep-Earth discoveries made possible by Swarm. With the unprecedented resolution now possible, it’s a very exciting time – we simply don’t know what we’ll discover next about our planet.”

(Images provided with ESA news release)

FMI: www.esa.int

Advertisement

More News

ANN's Daily Aero-Term (05.17.24): Very High Frequency

Very High Frequency The frequency band between 30 and 300 MHz. Portions of this band, 108 to 118 MHz, are used for certain NAVAIDs; 118 to 136 MHz are used for civil air/ground voi>[...]

ANN's Daily Aero-Linx (05.17.24)

Aero Linx: Aviation Suppliers Association Established February 25, 1993, the Aviation Suppliers Association (ASA), based in Washington, D.C., is a not-for-profit association, repre>[...]

ANN FAQ: Submit a News Story!

Have A Story That NEEDS To Be Featured On Aero-News? Here’s How To Submit A Story To Our Team Some of the greatest new stories ANN has ever covered have been submitted by our>[...]

Classic Aero-TV: ANN Visits Wings Over The Rockies Exploration Of Flight

From 2021 (YouTube Version): Colorado Campus Offers aVariety Of Aerospace Entertainment And Education Wings over the Rockies Exploration of Flight is the second location for the Wi>[...]

Airborne Affordable Flyers 05.16.24: PRA Runway, Wag-Aero Sold, Young Eagles

Also: Paramotor Champ's, Electric Ultralight, ICON BK Update, Burt Rutan at Oshkosh! The Popular Rotorcraft Association is reaching out for help in rebuilding their private runway >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC