Aerion Expands Collaboration With NASA | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.20.24

Airborne-Unlimited-05.28.24

Airborne-FlightTraining-05.29.24 Airborne-Unlimited-05.30.24

Airborne-Unlimited-05.24.24

Fri, Jun 08, 2012

Aerion Expands Collaboration With NASA

Includes Supersonic Design Code Maturation

An expansion of the collaboration between Aerion Corporation and NASA's Glenn Research Center was announced Monday. The two will work together to mature NASA’s new SUPIN (SUPersonic INlet) computer code, which has been developed to perform aerodynamic design and analysis on engine inlets for future high-speed aircraft, such as Aerion’s planned supersonic business jet (SBJ).

Aerion and NASA collaborate on inlet design and advanced boundary layer control methods to achieve efficient and stable supersonic inlet operation without boundary layer bleed. The use of bleed reduces efficiency, as well as increases cost and complexity. Thus, a no-bleed inlet could benefit SBJ performance in anticipated real-world operating conditions. Collaboration with NASA on their SUPIN code began this month and is expected to last approximately one year.

“Our collaborative effort with NASA Glenn to mature the SUPIN supersonic inlet design code builds on our existing relationship with NASA Dryden and both partnerships could pay dividends for years to come in the form of faster and more efficient flight,” said Dr. Richard Tracy, Aerion’s chief technology officer.

This arrangement, made possible through a Space Act Agreement, is in addition to the company’s ongoing collaboration with NASA’s Dryden Flight Research Center on another round of supersonic F-15B flights featuring an Aerion test article. The additional flights, scheduled for this summer, are intended to evaluate supersonic boundary layer transition properties as they relate to manufacturing standards for surface quality and assembly tolerances. These flights and the engine inlet design code maturation project represent two vital elements in the company’s plan to design the world’s first supersonic business jet. (Image provided by Aerion)

FMI: www.nasa.gov, www.aerion.com

Advertisement

More News

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

ANN's Daily Aero-Linx (05.29.24)

Aero Linx: International Association of Professional Gyroplane Training (IAPGT) We are an Association of people who fly, build or regulate Gyroplanes, who have a dream of a single >[...]

ANN's Daily Aero-Term (05.29.24): NORDO (No Radio)

NORDO (No Radio) Aircraft that cannot or do not communicate by radio when radio communication is required are referred to as “NORDO.”>[...]

Airborne 05.28.24: Jump Plane Down, Starship's 4th, Vision Jet Problems

Also: uAvionix AV-Link, F-16 Viper Demo, TN National Guard, 'Staff the Towers' A Saturday afternoon jump run, originating from SkyDive Kansas City, went bad when it was reported th>[...]

ANN's Daily Aero-Term (05.30.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC