Flight Testing for Mars: Dryden F-18 Flying MSL Radar | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Mon, Jun 27, 2011

Flight Testing for Mars: Dryden F-18 Flying MSL Radar

California High Desert Simulates Martian Conditions

Southern California's high desert has been a stand-in for Mars for NASA technology testing many times over the years. So it was again as NASA's Dryden Flight Research Center and Jet Propulsion Laboratory flight-tested the next Mars rover's landing radar, using an F/A-18 aircraft.

The Mars Science Laboratory, or MSL mission, is following up the grand success of the twin Mars Exploration Rovers, Spirit and Opportunity, which tirelessly explored Mars for the last seven years. The MSL mission is part of NASA's Mars Exploration Program, a long-term robotic exploration effort of the red planet. The mission is managed by JPL in Pasadena, CA.

NASA Dryden's F/A-18 carried a Quick Test Experimental Pod, or QTEP, that housed the MSL test radar, attached underneath the aircraft's left wing. The flight profile was designed to have the F/A-18 climb to 40,000 feet, then make a series of subsonic, stair-step dives over Rogers Dry Lake at angles of 40 to 90 degrees in order to simulate what the MSL's radar will see during entry into the Martian atmosphere. The F/A-18 pulled out of each dive at 5,000 feet.

"Not only has the working relationship between Dryden and JPL been exemplary, but we're proving the viability of suborbital flight testing of critical space hardware," says Mike Holtz, Dryden's MSL project lead and F/A-18 backseat flight test engineer. "This has been a unique opportunity to test equipment in a representative environment prior to the space flight hardware blasting off to Mars," Holtz says.

Data collected by these flights will be used to finesse the MSL's landing radar software to help ensure that it calibrated as accurately as possible.

The current MSL landing radar flight tests with the F/A-18, which concluded June 20, focused on the on-chute acquisition portion of the MSL's entry into the Martian atmosphere, when the spacecraft is suspended from its parachute. Last June, NASA Dryden supported MSL radar testing aboard a helicopter at Dryden, which focused on the powered descent portion of the MSL flight profile.

Overall, the flight envelope for MSL radar operations is much larger than it was for the Mars Exploration Rovers and Phoenix Lander, due to the MSL radar operating at higher altitudes than either of its predecessors. Those previous Mars missions tested the landing radar with only a helicopter, but testing with both the helicopter and the F/A-18 is required this time around.

The test results will be analyzed to verify the radar performs as expected throughout its flight envelope. If any unexpected performance is uncovered, the JPL team has the ability to modify the parameters and/or software any time leading up to the rover's scheduled landing in August 2012.

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (05.10.24): Takeoff Roll

Takeoff Roll The process whereby an aircraft is aligned with the runway centerline and the aircraft is moving with the intent to take off. For helicopters, this pertains to the act>[...]

Aero-News: Quote of the Day (05.10.24)

“We’re proud of the hard work that went into receiving this validation, and it will be a welcome relief to our customers in the European Union. We couldn’t be mor>[...]

Aero-News: Quote of the Day (05.11.24)

"Aircraft Spruce is pleased to announce the acquisition of the parts distribution operations of Wag-Aero. Wag-Aero was founded in the 1960’s by Dick and Bobbie Wagner in the >[...]

ANN's Daily Aero-Term (05.11.24): IDENT Feature

IDENT Feature The special feature in the Air Traffic Control Radar Beacon System (ATCRBS) equipment. It is used to immediately distinguish one displayed beacon target from other be>[...]

ANN's Daily Aero-Linx (05.11.24)

Aero Linx: Pararescue Air Force Pararescuemen, also known as PJs, are the only DoD elite combat forces specifically organized, trained, equipped, and postured to conduct full spect>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC