NASA Wind Tunnel Tests X-Plane Design For A Quieter Supersonic Jet | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Tue, Feb 28, 2017

NASA Wind Tunnel Tests X-Plane Design For A Quieter Supersonic Jet

Evaluation Being Conducted At NASA's Glenn Research Center In Cleveland

Supersonic passenger airplanes are another step closer to reality as NASA and Lockheed Martin begin the first high-speed wind tunnel tests for the Quiet Supersonic Technology (QueSST) X-plane preliminary design at NASA’s Glenn Research Center in Cleveland.

The agency is testing a nine percent scale model of Lockheed Martin’s X-plane design in Glenn’s 8’ x 6’ Supersonic Wind Tunnel. During the next eight weeks, engineers will expose the model to wind speeds ranging from approximately 150 to 950 mph (Mach 0.3 to Mach 1.6) to understand the aerodynamics of the X-plane design as well as aspects of the propulsion system. NASA expects the QueSST X-plane to pave the way for supersonic flight over land in the not too distant future.

“We’ll be measuring the lift, drag and side forces on the model at different angles to verify that it performs as expected,” said aerospace engineer Ray Castner, who leads propulsion testing for NASA’s QueSST effort. “We also want make sure the air flows smoothly into the engine under all operating conditions.”

The Glenn wind tunnel is uniquely suited for the test because of its size and ability to create a wide range of wind speeds. “We need to see how the design performs from just after takeoff, up to cruising at supersonic speed, back to the start of the landing approach,” said David Stark, the facility manager. “The 8’ x 6’ supersonic wind tunnel allows us to test that sweet spot range of speeds all in one wind tunnel.”

Recent research has shown it is possible for a supersonic airplane to be shaped in such a way that the shock waves it forms when flying faster than the speed of sound can generate a sound at ground level so quiet it will hardly will be noticed by the public, if at all.

“Our unique aircraft design is shaped to separate the shocks and expansions associated with supersonic flight, dramatically reducing the aircraft’s loudness,” said Peter Losifidis, QueSST program manager at Lockheed Martin Skunk Works. “Our design reduces the airplane’s noise signature to more of a ‘heartbeat’ instead of the traditional sonic boom that’s associated with current supersonic aircraft in flight today.”

According to Dave Richwine, NASA’s QueSST preliminary design project manager, “This test is an important step along the path to the development of an X-plane that will be a key capability for the collection of community response data required to change the rules for supersonic overland flight.”

NASA awarded Lockheed Martin a contract in February 2016 for the preliminary design of a supersonic X-plane flight demonstrator. This design phase has matured the details of the aircraft shape, performance and flight systems. Wind tunnel testing and analysis is expected to continue until mid-2017. Assuming funding is approved, the agency expects to compete and award another contract for the final design, fabrication, and testing of the low-boom flight demonstration aircraft.

The QueSST design is one of a series of X-planes envisioned in NASA's New Aviation Horizons (NAH) initiative, which aims to reduce fuel use, emissions and noise through innovations in aircraft design that depart from the conventional tube-and-wing aircraft shape. The design and build phases for the NAH aircraft will be staggered over several years with the low boom flight demonstrator starting its flight campaign around 2020, with other NAH X-planes following in subsequent years, depending on funding.

(Image provided with Lockheed Martin news release)

FMI: www.lockheedmartin.com

Advertisement

More News

ANN's Daily Aero-Term (04.24.24): Runway Lead-in Light System

Runway Lead-in Light System Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance a>[...]

ANN's Daily Aero-Linx (04.24.24)

Aero Linx: Aviation Without Borders Aviation Without Borders uses its aviation expertise, contacts and partnerships to enable support for children and their families – at hom>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

Classic Aero-TV: Best Seat in The House -- 'Inside' The AeroShell Aerobatic Team

From 2010 (YouTube Version): Yeah.... This IS A Really Cool Job When ANN's Nathan Cremisino took over the lead of our Aero-TV teams, he knew he was in for some extra work and a lot>[...]

Airborne Affordable Flyers 04.18.24: CarbonCub UL, Fisher, Affordable Flyer Expo

Also: Junkers A50 Heritage, Montaer Grows, Dynon-Advance Flight Systems, Vans' Latest Officially, the Carbon Cub UL and Rotax 916 iS is now in its 'market survey development phase'>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC