UAVs: Not Just For Combat Missions Or Border Patrol | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-10.28.24

Airborne-NextGen-10.29.24

Airborne-Unlimited-10.30.24

Airborne-Unlimited-10.24.24

Airborne-Unlimited-10.25.24

Mon, Apr 12, 2010

UAVs: Not Just For Combat Missions Or Border Patrol

NASA's Global Hawk Completes First Scientific Flight

The first of five scientific flights by NASA's Global Hawk autonomous UAV scheduled this month was completed successfully on Wednesday. The aircraft flew just over 14 hours high above the Pacific Ocean on an atmospheric study mission ... dubbed GloPac. The study will eventually expand to the Arctic Ocean as well.

GloPac researchers plan to directly measure and sample greenhouse gases, ozone-depleting substances, aerosols and constituents of air quality in the upper troposphere and lower stratosphere. GloPac's measurements will cover longer time periods and greater geographic distances than any other science aircraft.

"The Global Hawk is a revolutionary aircraft for science because of its enormous range and endurance," said Paul Newman, co-mission scientist for GloPac and an atmospheric scientist from NASA's Goddard Space Flight Center in Greenbelt, MD. "No other science platform provides the range and time to sample rapidly evolving atmospheric phenomena. This mission is our first opportunity to demonstrate the unique capabilities of this plane, while gathering atmospheric data in a region that is poorly sampled."
 

During Wednesday's flight, the plane flew approximately 4,500 nautical miles along a flight path that took it to 150.3 degrees West longitude, and 54.6 degrees North latitude, just south of Alaska's Kodiak Island. The flight lasted just over 14 hours and flew up to 60,900 feet. The mission is a joint project with NOAA.

The plane carries 11 instruments to sample the chemical composition of the troposphere and stratosphere, including two from NASA's Jet Propulsion Laboratory, Pasadena, CA. The instruments profile the dynamics and meteorology of both layers and observe the distribution of clouds and aerosol particles. Project scientists expect to take observations from the equator north to the Arctic Circle and west of Hawaii.

Although the plane is designed to fly on its own, pilots can change its course or altitude based on interesting atmospheric phenomena ahead. Researchers have the ability via communications links to control their instruments from the ground. "The Global Hawk is a fantastic platform because it gives us expanded access to the atmosphere beyond what we have with piloted aircraft," said David Fahey, co-mission scientist and a research physicist at NOAA's Earth System Research Laboratory in Boulder, CO. "We can go to regions we couldn't reach or go to previously explored regions and study them for extended periods that are impossible with conventional planes."

The timing of GloPac flights should allow scientists to observe the breakup of the polar vortex. The vortex is a large-scale cyclone in the upper troposphere and lower stratosphere that dominates winter weather patterns around the Arctic and is particularly important for understanding ozone depletion in the Northern Hemisphere.

Scientists also expect to gather high-altitude data between 13,716 and 19,812 meters (45,000 and 65,000 feet), where many greenhouse gases and ozone-depleting substances are destroyed. They will measure dust, smoke and pollution that cross the Pacific from Asia and Siberia and affect U.S. air quality.

Global Hawk will make several flights under NASA's Aura satellite and other "A-train" Earth-observing satellites, "allowing us to calibrate and confirm what we see from space," Newman added. GloPac is specifically being conducted in conjunction with NASA's Aura Validation Experiment.

GloPac includes more than 130 researchers and technicians from Goddard, Dryden Flight Research Center, JPL, and Ames Research Center in Moffett Field, Cai. Also involved are NOAA's Earth System Research Laboratory; the University of California, Santa Cruz; Droplet Measurement Technologies of Boulder, CO; and the University of Denver.

FMI: www.nasa.gov

Advertisement

More News

Senator Pushes FAA to Accelerate Rocket Launch Licensing

States That Current Process is Damaging National Aerospace Development US Senator Jerry Morgan is pushing the FAA to speed up the process for rocket launch licensing. He argues tha>[...]

Classic Aero-TV: RJ Gritter - Part of Aviation’s Bright New Future

From 2015 (YouTube Edition): Model Aviator Aims For Full-Scale Career While at the 2015 Indoor Electric RC Festival, referred to as eFest, ANN CEO and Editor-In-Chief, Jim Campbell>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

ANN's Daily Aero-Linx (10.27.24)

Aero Linx: Cardinal Flyers Online The Cardinal Flyers Online Web site was created and is maintained by me, Keith Peterson. My wife Debbie and I have owned a 1976 RG since 1985. Wit>[...]

ANN's Daily Aero-Term (10.27.24): Clearance Void If Not Off By (Time)

Clearance Void If Not Off By (Time) Used by ATC to advise an aircraft that the departure release is automatically canceled if takeoff is not made prior to a specified time. The exp>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC