New ASTM International Standard Supports Parachutes For Drones | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Thu, Sep 20, 2018

New ASTM International Standard Supports Parachutes For Drones

Provides A Path Of Requirements For Testing And Validation Documentation For A Parachute Recovery System

A new ASTM International standard aims to help meet the need for parachute recovery systems to increase safety when operating small Unmanned Aircraft Systems (sUAS), commonly known as drones.

The new standard provides a path of requirements for testing and validation documentation for a parachute recovery system (PRS).  According to members of the ASTM International UAS committee (F38), this could help a drone operator seek approval from a civil aviation authority to fly small drones over people.

Specifically, the standard defines the design, fabrication, and test requirements of installable, deployable PRS integrated into a drone to lessen the impact energy of the system should it fail to sustain normal, stable, safe flight. The standard applies to multi-rotor, single-rotor, hybrid, vertical takeoff/landing (VTOL), or fixed-wing drones.

The standard will soon be published as F3322.

According to ASTM International member Alan Erickson, CTO, Indemnis, Inc. and the technical contact on the committee, the new standard creates a framework for the entity that integrates the parachute components, the drone itself, and the testing of the entire system. This entity can be the PRS manufacturer, the drone manufacturer, or the person trying to get permission from a civil aviation authority to fly a drone over people.

“The standard includes a rigorous design and testing matrix due to the simple fact that a PRS may be the only failsafe in a critical system failure,” says Erickson. “When applied correctly, a PRS will enable industry growth in a way that provides civil aviation authorities and civilian populations with a high level of confidence in sUAS.”

(Source: ASTM news release. Image from file)

FMI: www.astm.org

Advertisement

More News

ANN's Daily Aero-Linx (05.02.24)

Aero Linx: Model Aeronautical Association of Australia MAAA clubs are about fun flying, camaraderie and community. For over 75 years, the MAAA has been Australia’s largest fl>[...]

ANN's Daily Aero-Term (05.02.24): Touchdown Zone Lighting

Touchdown Zone Lighting Two rows of transverse light bars located symmetrically about the runway centerline normally at 100 foot intervals. The basic system extends 3,000 feet alon>[...]

Aero-News: Quote of the Day (05.02.24)

“Discovery and innovation are central to our mission at Virgin Galactic. We’re excited to build on our successful record of facilitating scientific experiments in subor>[...]

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

NTSB Final Report: Cirrus Design Corp SR20

Student Pilot Reported That During Rotation, “All Of A Sudden The Back Of The Plane Kicked To The Right..." Analysis: The student pilot reported that during rotation, “>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC