Southwest Research Institute Patents Drone Control Technology | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-Unlimited-04.23.24

Airborne-Unlimited-04.24.24 Airborne-FltTraining-04.25.24

Airborne-Unlimited-04.26.24

Mon, May 22, 2017

Southwest Research Institute Patents Drone Control Technology

Allows Automated Ground Vehicles To Pilot UAVs

Southwest Research Institute (SwRI) has secured a patent for technology that allows unmanned aerial systems to cooperate with unmanned ground vehicles, providing more information about the surrounding environment and enabling safer maneuvers.

“We developed this capability to support defense clients seeking solutions to the challenges of unmanned ground vehicles navigating in extreme environments,” said Ryan Lamm, director of SwRI’s Applied Sensing Department.

The technology has immediate military applications, and the system also is helping SwRI to develop future commercial solutions for remote inspection systems. U.S. Patent No. 9,625,904 for “Unmanned ground/aerial vehicle system having autonomous ground vehicle that remotely controls one or more aerial vehicles” covers on-board, in-sky perception sensors that can detect a path to be followed by the ground vehicle.

The control system of the automated ground vehicle locates and controls the aerial vehicle and receives data from both the on-ground and in-sky perception sensors. It uses the combined perception data to determine paths for the ground vehicle as well as other remotely controlled aerial vehicles.

The pairing of remote-controlled ground and air vehicles is not new. However, the SwRI patent is unique in that it provides a completely autonomous solution that allows the systems to benefit from each other’s capabilities. Previous systems relied on human control of one or both vehicles with a remote-control system.

With autonomous control, a vehicle’s on-board control system allows it to perform its mission independent of a human operator, providing a safe alternative in dangerous environments. To address the computer processing and sensing necessary for this system, the autonomous ground vehicle remotely controls aerial vehicles.  “This strategy effectively allows a highly intelligent autonomous robot to remotely control less intelligent robots without human intervention,” Lamm said.

The system includes sensors mounted on the ground vehicle to perceive obstacles in its path, while sensors aboard the aerial vehicle help detect low terrain that may be obstructed by objects in front of a ground vehicle’s sensor path. The sensors on the ground vehicle also help the aerial vehicle navigate and sense tall objects that might impact its flight path.

(Image provided with SwRI news release)

FMI: www.swri.org/automated-driving-systems-ugvs

Advertisement

More News

ANN's Daily Aero-Term (04.30.24): Runway Centerline Lighting

Runway Centerline Lighting Flush centerline lights spaced at 50-foot intervals beginning 75 feet from the landing threshold and extending to within 75 feet of the opposite end of t>[...]

ANN's Daily Aero-Linx (04.30.24)

Aero Linx: Air Force Global Strike Command Air Force Global Strike Command, activated August 7, 2009, is a major command with headquarters at Barksdale Air Force Base, Louisiana, i>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne 04.29.24: EAA B-25 Rides, Textron 2024, G700 Deliveries

Also: USCG Retires MH-65 Dolphins, Irish Aviation Authority, NATCA Warns FAA, Diamond DA42 AD This summer, history enthusiasts will have a unique opportunity to experience World Wa>[...]

Airborne-NextGen 04.23.24: UAVOS UVH 170, magni650 Engine, World eVTOL Directory

Also: Moya Delivery Drone, USMC Drone Pilot, Inversion RAY Reentry Vehicle, RapidFlight UAVOS has recently achieved a significant milestone in public safety and emergency services >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC