The Promise Of eSTOL | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Jul 24, 2019

The Promise Of eSTOL

New Technology Meets Old School

By: Rex Alexander

While accelerating the airflow over the top of the wing of an aircraft to help increase its overall lift is nothing new, it is the advancements in technology such as better electric motors coupled with improvements in ducted fans that is breathing new life into this 1940's tech. This is beginning to make this aviation adaptation look more feasible every day for Short Takeoff and Landing (STOL) aircraft.

In the 1940s and 50s, the process of increasing the airflow over the upper surface of a wing showed great promise in creating aircraft that were capable of slower flight speeds without stalling, steeper approach angles and extremely short takeoff and landing distances. One man who is currently conducting research and testing in this space is Dr. David Ullman who is an Emeritus Professor of Design from Oregon State University and an active electric aircraft designer. According to Dr. Ullman by playing with the aerodynamics of a wing through the application of distributive ducted fans along the leading edge, one has the potential to significantly improve lift in some very interesting ways.

This application could allow for higher fidelity in airflow management to the point that it may be possible to completely eliminate the need for ailerons on aircraft in the future. This is accomplished by independently manipulating the thrust of individual ducted fans installed along a wingís leading edge. In theory, this application could reduce an aircraftís stall speed to as low as 25 knots (28 mph).

While a STOL aircraft does require a certain amount of room to take off and land, this technology could allow for takeoffs in as little as 20 to 80 feet while using 1/5th of the total power required to takeoff vertical at the same location. This huge savings in power would then equate to much greater flight ranges being achievable. Based on current stats, an eVTOL aircraft could have nearly half the range of an eSTOL aircraft.

(Image provided by author)

FMI: www.davidullman.com

 


Advertisement

More News

Airbus Racer Helicopter Demonstrator First Flight Part of Clean Sky 2 Initiative

Airbus Racer Demonstrator Makes Inaugural Flight Airbus Helicopters' ambitious Racer demonstrator has achieved its inaugural flight as part of the Clean Sky 2 initiative, a corners>[...]

Diamond's Electric DA40 Finds Fans at Dübendorf

A little Bit Quieter, Said Testers, But in the End it's Still a DA40 Diamond Aircraft recently completed a little pilot project with Lufthansa Aviation Training, putting a pair of >[...]

ANN's Daily Aero-Term (04.23.24): Line Up And Wait (LUAW)

Line Up And Wait (LUAW) Used by ATC to inform a pilot to taxi onto the departure runway to line up and wait. It is not authorization for takeoff. It is used when takeoff clearance >[...]

NTSB Final Report: Extra Flugzeugbau GMBH EA300/L

Contributing To The Accident Was The Pilot’s Use Of Methamphetamine... Analysis: The pilot departed on a local flight to perform low-altitude maneuvers in a nearby desert val>[...]

Classic Aero-TV: 'Never Give Up' - Advice From Two of FedEx's Female Captains

From 2015 (YouTube Version): Overcoming Obstacles To Achieve Their Dreams… At EAA AirVenture 2015, FedEx arrived with one of their Airbus freight-hauling aircraft and placed>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC