Navy Launches First Aircraft Using EMALS | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Wed, Dec 22, 2010

Navy Launches First Aircraft Using EMALS

Electromagnetic Launch System Will Replace Steam Catapults On Aircraft Carriers

The Navy has been using steam for more than 50 years to launch aircraft from carriers. Saturday, the Aircraft Launch and Recovery Equipment (ALRE) program launched an F/A-18E Super Hornet using an Electromagnetic Aircraft Launch System, or EMALS technology that will eventually replace steam catapults on future aircraft carriers. The test was conducted at the Naval Air Systems Command facility in Lakehurst, NJ.

“This is a tremendous achievement not just for the ALRE team, but for the entire Navy,” said Capt. James Donnelly, ALRE program manager. “Saturday’s EMALS launch demonstrates an evolution in carrier flight deck operations using advanced computer control, system monitoring and automation for tomorrow’s carrier air wings.”

EMALS is a complete carrier-based launch system designed for Gerald R. Ford (CVN 78) and future Ford-class carriers. “I thought the launch went great,” said Lt. Daniel Radocaj, the test pilot from Air Test and Evaluation Squadron 23 (VX-23) who made the first EMALS manned launch. “I got excited once I was on the catapult but I went through the same procedures as on a steam catapult. The catapult stroke felt similar to a steam catapult and EMALS met all of the expectations I had.”

The current aircraft launch system for Navy aircraft carriers is the steam catapult. Newer, heavier and faster aircraft will result in launch energy requirements approaching the limits of the steam catapult system. The mission and function of EMALS remain the same as the steam catapult; however, EMALS employs entirely different technologies. EMALS will deliver the necessary higher launch energy capacity as well as substantial improvements in system weight, maintenance, increased efficiency, and more accurate end-speed control.

“I felt honored to be chosen as the Shooter to help launch the first live aircraft tested on the new EMALS track at Lakehurst,” said Chief Petty Officer Brandon Barr, Naval Air Warfare Center Aircraft Division Test Department, Lakehurst. “It was very exciting to knowingly be a part of naval aviation history. Petty Officers 1st Class Hunsaker and Robinson, Petty Officers 2nd Class Williams, Wong, and Simmons, were the sailors on my team who worked together to help make this test a success. We all look forward to seeing this cutting edge technology deployed on the Gerald R. Ford."

“I’m excited about the improvement EMALS will bring to the fleet from a capability and reliability perspective,” said Cmdr. Russ McCormack, ALRE, PMA-251, deputy program manager for future systems. “EMALS was designed for just that purpose, and the team is delivering that requirement.” The system’s technology allows for a smooth acceleration at both high and low speeds, increasing the carrier’s ability to launch aircraft in support of the warfighter.

The system will provide the capability for launching all current and future carrier air wing platforms – lightweight unmanned to heavy strike fighters.  Engineers will continue system functional demonstration testing at NAVAIR Lakehurst. The team will expand aircraft launches with the addition of T-45 and C-2 aircraft next year.

FMI: www.navair.navy.mil

Advertisement

More News

ANN's Daily Aero-Linx (05.02.24)

Aero Linx: Model Aeronautical Association of Australia MAAA clubs are about fun flying, camaraderie and community. For over 75 years, the MAAA has been Australia’s largest fl>[...]

ANN's Daily Aero-Term (05.02.24): Touchdown Zone Lighting

Touchdown Zone Lighting Two rows of transverse light bars located symmetrically about the runway centerline normally at 100 foot intervals. The basic system extends 3,000 feet alon>[...]

Aero-News: Quote of the Day (05.02.24)

“Discovery and innovation are central to our mission at Virgin Galactic. We’re excited to build on our successful record of facilitating scientific experiments in subor>[...]

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

NTSB Final Report: Cirrus Design Corp SR20

Student Pilot Reported That During Rotation, “All Of A Sudden The Back Of The Plane Kicked To The Right..." Analysis: The student pilot reported that during rotation, “>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC