Scan Eagle UAV Conducts First Flight On LPD Class Ship | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Fri, Dec 14, 2012

Scan Eagle UAV Conducts First Flight On LPD Class Ship

First Operational Deployment Aboard The USS San Antonio Is Planned For Next Summer

A Scan Eagle Unmanned Air Vehicle was launch-tested aboard the amphibious transport dock class ship USS San Antonio (LPD 17) on Nov. 28 off the coast of North Carolina. The flight on the San Antonio LPD class ship was part of a post-installation and functional flight-check exercise. Scan Eagle’s first deployment aboard USS San Antonio is planned for summer 2013.

Since 2005, Scan Eagle has flown nearly 250,000 hours under the Naval Air Systems Command's Intelligence, Surveillance and Reconnaissance (ISR) services contract. Defense contractor Insitu owns and operates the Scan Eagle UAV.

The 44-pound UAV is predominately flown off Navy DDG-51 destroyers. Recent and upcoming ISR services on amphibious warfare ships are a precursor for the Navy and Marine Corps' plans to field and operate the expeditionary RQ-21A Small Tactical Unmanned Air System from the sea. The RQ-21A Integrator just completed land-based testing and is scheduled to begin shipboard testing early next year.

According to the Navy, the Scan Eagle unmanned air vehicle was designed for long endurance capability. Scan Eagle features a high aspect ratio swept wing, shoulder-mounted on a cylindrical fuselage using blended fairings. The air vehicle is tailless, with a rear-mounted engine driving a pusher propeller. The structure is carbon fiber composite with fiberglass winglets. Two sets of elevons on the wings provide pitch and roll control, with rudders on the winglets at the wingtips for directional control.

The Super Wedge catapult provides the initial velocity and rate of climb. The catapult requires approximately 45-75 PSI compressed air (depending on weight and wind) to charge the system. The pneumatic catapult is charged from a remotely operated air compressor attached to the launcher.

FMI: www.navy.mil

Advertisement

More News

Aero-News: Quote of the Day (05.09.24)

"Fly-by-wire flight, coupled with additional capability that are being integrated into ALFA, provide a great foundation for Bell to expand on its autonomous capabilities. This airc>[...]

ANN's Daily Aero-Term (05.09.24): Hold Procedure

Hold Procedure A predetermined maneuver which keeps aircraft within a specified airspace while awaiting further clearance from air traffic control. Also used during ground operatio>[...]

ANN's Daily Aero-Linx (05.09.24)

Aero Linx: B-21 Raider The B-21 Raider will be a dual-capable penetrating strike stealth bomber capable of delivering both conventional and nuclear munitions. The B-21 will form th>[...]

Airborne 05.03.24: Advanced Powerplant Solutions, PRA Runway Woes, Drone Racing

Also: Virgin Galactic, B-29 Doc to Allentown, Erickson Fire-Fighters Bought, FAA Reauthorization After dealing with a big letdown after the unexpected decision by Skyreach to disco>[...]

Airborne-NextGen 05.07.24: AI-Piloted F-16, AgEagle, 1st 2 WorldView Sats

Also: Skydio Chief, Uncle Sam Sues, Dash 7 magniX, OR UAS Accelerator US Secretary of the Air Force Frank Kendall was given a turn around the patch in the 'X-62A Variable In-flight>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC