How To High Mu: Carter Announces DARPA To Fund Carter Aviation Technologies | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.19.25

Airborne-NextGen-05.20.25

AirborneUnlimited-05.21.25

Airborne-AffordableFlyers-05.22.25

AirborneUnlimited-05.23.25

Wed, Nov 05, 2003

How To High Mu: Carter Announces DARPA To Fund Carter Aviation Technologies

CarterCopter Gang To Build NextGen Rotor/Prop System

It's not often that we're pleased to hear that our government is getting ready to spend a few more of our tax dollars... but this time, I think that we tax-payers might actually get our money's worth.

Carter Aviation Technologies (Carter) has told ANN that it has been awarded their first contract from the Defense Advanced Research Projects Agency (DARPA). The contract was awarded to support Carter's development of their next generation propeller and rotor. Design work for the new prop and rotor has been initiated.

This next generation two bladed rotor is designed for higher Mu flight. It will be 45 feet tip-to-tip with 50 sq. ft. of lifting surface and weigh approximately 300 lbs. Of that weight, 110 lbs is inertia weights located in 'leading edge triangular deltas' at the rotor tips. The rotor could produce 12,000-lbs of lift at MSL on a standard day. The ratio of the rotor's weight to an 8,000-lb helicopter would be .0375, which is only 1/2 to 1/3 the rotor weight of most helicopters. The inherent lightweight Carter rotor design permits using a safety factor that is higher than that normally found in helicopters.

Carter's new, scimitar, 8-foot diameter propeller should be able to absorb 600 hp as a 2-bladed version and 1200 hp as a 4-bladed version. The highly swept blades will permit the use of higher tip speeds, higher coefficients of lift and thicker, more structurally efficient airfoils without getting into critical Mach. This propeller can be optimized for better static and climb efficiencies without losing any noticeable cruise efficiency up through 300 mph. Weight of the 2 bladed version including the pitch change mechanism is expected to be less than 60 lbs.

The DARPA contract is a one-time agreement to gain a better understanding of Carter's unique propeller and rotor technologies. The $250,000 in funding will help Carter demonstrate these technologies and gain more test data over a wider spectrum of performance. Carter is pleased to have DARPA interest in their rotor and propeller technologies. After more than four years of flight-testing with the original prototype, Carter is committed to moving forward with its next generation aircraft and conquering high-Mu flight.

FMI: www.CarterAviationTechnologies.com

Advertisement

More News

Oshkosh Memories: An Aero-News Stringer Perspective

From 2021: The Inside Skinny On What Being An ANN Oshkosh Stringer Is All About By ANN Senior Stringer Extraordinare, Gene Yarbrough The annual gathering at Oshkosh is a right of p>[...]

NTSB Prelim: Diamond Aircraft Ind Inc DA 40 NG

Pilot Asked The Mechanic To Go For A Test Flight Around The Airport Traffic Pattern With Him For A Touch-And-Go Landing, And Then A Full-Stop Landing On May 7, 2025, about 1600 eas>[...]

Classic Aero-TV: US Airways Jeff Skiles-Making History and Looking To The Future

From 2010 (YouTube Edition): Skiles Reflects On His Ring-Side Seat To An Historic Event Jeff Skiles, First Officer of US Airways Flight 1549, "The Miracle on the Hudson," was the g>[...]

Aero-News: Quote of the Day (05.26.25)

“The FAA conducted a comprehensive safety review of the SpaceX Starship Flight 8 mishap and determined that the company has satisfactorily addressed the causes of the mishap,>[...]

ANN's Daily Aero-Term (05.26.25): Fuel Remaining

Fuel Remaining A phrase used by either pilots or controllers when relating to the fuel remaining on board until actual fuel exhaustion. When transmitting such information in respon>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC