NTSB Releases Factual Report From Accident Involving Dr. Perry Inhofe | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Thu, Aug 14, 2014

NTSB Releases Factual Report From Accident Involving Dr. Perry Inhofe

Report Includes Detail About MU-2 Training, Procedures

The NTSB's factual report from the accident which fatally injured Dr. Perry Inhofe last November contains a great deal of detail about training and emergency procedures for the MU-2, as well as some of Dr. Inhofe's notes about flying the airplane.

Dr. Inhofe was the son of U.S. Senator James Inhofe (R-OK), a strong advocate of General Aviation.

According to the report, on November 10, 2013, about 1546 central standard time, a Mitsubishi MU-2B-25 twin-engine airplane, N856JT, impacted wooded terrain while maneuvering near Owasso, Oklahoma. The commercial pilot, who was the sole occupant of the airplane, sustained fatal injuries. The airplane was destroyed. The airplane was registered to Anasazi Winds, LLC, Tulsa, Oklahoma, and was operated by the pilot under the provisions of 14 Code of Federal Regulations Part 91 as a personal flight. Visual meteorological conditions prevailed for the flight, and an instrument flight plan had been filed. The flight departed Salina Regional Airport (SLN), Salina, Kansas, about 1503 and was en route to Tulsa International Airport (TUL), Tulsa, Oklahoma.

After takeoff, the airplane was radar identified by the Kansas City Center (ZKC) sector R66 controller, and the pilot was cleared to climb to 9,000 feet. About 1506, the pilot was cleared to climb to 17,000 feet. The flight proceeded normally, and at 1518, the pilot was instructed to contact the ZKC sector R72 controller. The pilot did so and was issued the Chanute altimeter setting, 30.30 inches of mercury. About 1527, the R72 controller instructed the pilot to descend at his discretion and maintain 10,000 feet. The pilot reported leaving 17,000 feet. About 1532, the R72 controller instructed the pilot to contact Tulsa approach control, and the pilot acknowledged.

At 1534:09, the pilot contacted Tulsa approach. He reported leaving 11,600 feet for 10,000 feet and having received automatic terminal information service information Charlie. The controller advised the pilot to expect vectors for a visual approach to TUL runway 18L, and the pilot acknowledged the information. At 1537:46, the controller instructed the pilot to turn 10 degrees left and descend to 6,000 feet. At 1540:07, the controller asked the pilot to turn another 10 degrees left and instructed him to descend to 2,500 feet. The pilot acknowledged the instructions.

At 1542:04, the controller advised the pilot that TUL was at the pilot's one o'clock position and 10 miles and asked the pilot to report the airport in sight. The pilot immediately replied, "In sight." The controller cleared the pilot for a visual approach to runway 18L and instructed him to contact TUL tower. The pilot acknowledged both the approach clearance and the frequency change.

The pilot contacted TUL tower at 1542:20 and again reported the airport in sight. The tower controller cleared the pilot to land on runway 18L and asked him to reduce speed to 150 knots or less for spacing behind an aircraft that would be departing from runway 18L. The pilot replied that he was reducing speed and acknowledged the runway assignment.

After the airplane passed the runway 18L outer marker, the airplane began a left turn. At 1544:48, when the airplane was about 90 degrees from the runway approach path, the tower controller transmitted, "Mitsubishi six Juliet tango tower." The pilot replied, "I've got a control problem." The controller responded, "Okay uh you can just maneuver there – if you can maneuver to the west and uh do you need assistance now?" At 1545:06, the pilot replied, " I've got a left engine shutdown."

At 1545:11, the tower controller contacted the approach controller to advise him that N856JT had a control problem and that other aircraft might have to be cleared out of the area.

At 1545:38, the tower controller transmitted, "Six Juliet Tango are you uh declaring an emergency uh well we'll declare emergency for runway 18L – you say you have an engine out and souls on board and fuel remaining if you have time." The controller made two additional attempts to contact the pilot at 1546:06 and 1546:55, but there was no response. According to the tower's Accident/Incident Notification Record completed after the accident, notification of emergency services occurred about 1546.

Radar data showed the airplane complete a 360-degree left turn near the runway 18L outer marker at 1,100 feet mean sea level (msl) then radar contact was lost.

Seven witnesses observed the airplane in a shallow left turn; the reported altitudes ranged from 400 to 800 feet above ground level (agl). Four witnesses recalled the landing gear in the extended position during the turn, and two witnesses observed that one engine propeller appeared not to be rotating or slowly rotating. One of the witnesses reported seeing a stream of black exhaust following the airplane and four reported not seeing any smoke. Four of the witnesses reported an unusual engine or propeller noise from the airplane, and four did not comment on the engine or propeller noise. Some of the witnesses observed the airplane in a left turn toward the west before the wings began to rock left and right at a 10-15 degree bank angle. Shortly thereafter, the airplane was seen in a bank to the right followed by a "hard" bank to the left. Some of the witnesses observed the airplane spiral toward the ground and disappear from view.

The pilot, age 51, held a commercial pilot certificate, with airplane single-engine land, airplane multiengine land, and instrument airplane ratings, and a flight instructor certificate with airplane single-engine land, airplane multi-engine land, and instrument airplane ratings. The pilot's most recent flight instructor renewal was completed on October 6, 2013, when he added an airplane multiengine endorsement. The pilot's most recent Federal Aviation Administration (FAA) third-class medical certificate was dated October 15, 2013, and had no limitations. The pilot's application for his medical certificate indicated no use of any medications and no medical history conditions.

According to pilot logbooks recovered at the accident site, which were partially consumed by fire, and other logbooks provided to investigators, the pilot had accumulated at least 2,874.4 total flight hours, of which 1,534.9 were in multiengine airplanes. The pilot accumulated most of his multiengine time in a Cessna 421B, which he owned since 2010.

Interviews with individuals who were in contact with the pilot and cellular telephone records were used to construct the pilot's 72-hour history before the accident. No abnormal routines or health issues were reported or noted.

Interviews were conducted with three pilots who flew with the accident pilot in the months before the accident. Although interviewed separately and not associated with each other, all three pilots had similar descriptions of the accident pilot. They described the pilot as a very good aviator who was studious and modest regarding his pilot skills. All three attested to the pilot's practice of flying in accordance with manufacturer guidance and meticulously following manufacturer checklists. None of the interviewed pilots recalled the pilot displaying any negative or bad flying habits.

Piloting a Mitsubishi MU-2B series airplane requires adherence to special training, experience, and operating conditions, which are provided in Special Federal Aviation Regulation (SFAR) No. 108 (published February 6, 2008, and effective February 5, 2009). Pilots cannot act as pilot-in-command (PIC) of an MU-2B series airplane unless they have logged a minimum of 100 flight hours as PIC in multiengine airplanes. For initial training, the SFAR requires a minimum of 20 hours of ground instruction and a minimum of 12 hours of flight instruction, with a minimum of 6 hours accomplished in the airplane, a level C simulator, or a level D simulator. Pilots must also satisfactorily complete a training course final phase check.

The accident pilot's MU-2B-25 ground school was conducted November 4-10, 2013, at Professional Flight Training, L.C. (PFT), Salina, Kansas. He was the sole student in the class and the training cadre consisted of one SFAR-certified flight instructor who was the school's owner. The instructor reported that ground school with the pilot took about 32 hours, which was consistent with the time normally allotted to teach new pilots. According to the MU-2B flight instructor, the pilot reported to him that he had no previous MU-2B or turbine airplane flight experience before the SFAR training.

The entire flight portion of the pilot's training was conducted in the accident airplane. The first flight was conducted on November 7, 2013, around the local area of Tulsa, Oklahoma. The second flight was conducted between Tulsa and Salina, Kansas. After the airplane landed at SLN, the remaining flights were flown in the local area of Salina. The instructor created training records for each flight, and the maneuvers flown were graded by assigning a rating of one through four, indicating poor, fair, average, and excellent, respectively. The pilot's scores on the first flight were about 2.8, or just below "average." On each subsequent flight, the pilot progressed, with no evidence of regression in any area. On the final flight, his maneuvers were about 3.8, or nearly "excellent."

Documentation provided by the instructor recorded the time allotted for training. Two total hour metrics were tracked for each flight: the Hobbs meter time and a block time. The Hobbs time recorded airplane operation with weight off of the landing gear, which was determined by a squat switch on the left main landing gear. The block time recorded the time from when the airplane began taxiing from parking to the runway and the time that it returned to parking. During training, the accident airplane recorded 11.5 hours of Hobbs time and 16 hours 35 minutes of block time.

On November 10, 2013, the morning of the accident, the pilot satisfactorily completed the phase check and received an SFAR endorsement in the MU-2B-25. The accident flight from SLN to TUL was the first time the pilot flew as a single pilot in the MU-2B-25 airplane.

In addition to MU-2B ground training, pilots are flight trained in stall recognition and recovery in accordance with flight profiles contained in SFAR No. 108. Pilots must perform approaches to stalls in takeoff, clean, and landing configurations with at least one approach-to-stall maneuver flown while in a 15-30 degree bank turn. Accelerated stalls are performed with both 20-degree and 0 flap configurations. A pilot must recover the airplane at the first indication of a stall, provided by either airframe buffet or the control wheel shaker. The final phase check includes three approach-to-stall maneuvers.

The accident pilot flew three training flights during which landing configuration stalls were performed. In addition, he performed a landing configuration stall maneuver during his final phase check flight, which took place on the morning of the accident.

Like stall training, single engine procedures and Vmc awareness training were taught during the pilot's ground and flight training, as required for completion of the SFAR flight phase check. The pilot had also performed a single engine landing on the morning of the accident during his final phase check.

The pilot's handwritten notes from his SFAR training were found in the airplane but were partially consumed by fire. Included in the pilot notes were the following:

- For engine out, center ball
- **120 knots, never go below; 1. Takeoff 2. Landing assured
- Vxse = 125 knots
- Single-engine flight - remain clean configuration until beginning of approach segment. In approach segment, gear up, flaps 5 degrees, then when landing assured, gear down, [flaps] 20 degrees
- (5 degrees flaps) Blue line, Vxse 130, Vyse 140

SFAR No. 108 specifies the use of a pilot checklist (MU-2B-25 (A2PC) YET 06248B) that was accepted by the FAA's Flight Standardization Board (FSB) in 2010. This checklist and the earlier FSB-accepted version are the only checklists accepted for use in MU-2B airplanes during flight operations and training. The expanded checklist accepted in 2010 includes a single page checklist, which is a condensed version of the normal procedures and is commonly known as a quick reference checklist.

The flight instructor reported that the pilot routinely flew with the single page checklist in a pouch located to the left side of the pilot's seat. The expanded pilot checklist was normally stowed behind the co-pilot's seat. A fire-damaged copy of the pilot's checklist was discovered in the wreckage located near the aft facing passenger seat just aft of the co-pilot's seat. The single page quick reference checklist was not located in the plastic retaining sleeve of the expanded checklist and was not located elsewhere in the wreckage; it was possibly consumed by fire.

The accident airplane was manufactured in 1973 by Mitsubishi as model MU-2B-25, serial number 306, and was a high-performance, twin-engine, high-wing, turboprop-powered airplane. It was issued a standard airworthiness certificate in the normal category on March 1, 1974, and registered to Anasazi Winds, LLC on September 26, 2013. The airplane was equipped with two 750 shaft horsepower (shp) (maximum continuous power rating of 715 shp) Honeywell TPE331-10AV-511M engines per a supplemental type certificate (STC) and Hartzell Propeller HC-B3TN-5M three-blade, single-acting, constant-speed, hydraulically-actuated propellers with feathering and reversing capability.

According to the airplane records and information obtained by a maintenance facility, the most recent inspection was a combined 100 hour/annual inspection completed on September 19, 2013, at a total airframe time of 6,581.4 hours (about 12.9 hours before the accident flight), and the engines had accumulated 936.4 hours since overhaul.

The airplane was configured with a Garmin G600 integrated avionics system, standard engine gauges, and a standard annunciator panel. The Garmin system was installed after the pilot purchased the airplane and before his flight training in the airplane. The pilot chose to install the Garmin system because it was the same system in his Cessna 421B airplane. It was estimated the pilot had 3 years and a minimum of 325 hours flying a G600-equipped airplane.

The accident site was located in wooded terrain about 5 miles north of TUL at a GPS elevation of about 650 feet. The airplane came to rest upright on a measured magnetic heading of 109 degrees. Several small trees displayed breaks and fractures that were consistent with the airplane impact sequence. The main wreckage area consisted of all major airplane structures and components. Postimpact fire consumed a majority of the fuselage and wing structure. The airplane impacted terrain in a slightly nose-down, left-wing-down attitude which was consistent with the crush damage to the forward fuselage, wings, and wing-tip fuel tanks relative to ground level.

The flight control cables and linkage system were examined for continuity. The elevator and rudder push-pull rods and cables exhibited continuity from the flight controls to the control surfaces. The wing spoiler cables exhibited continuity from the control yokes to the mixing unit located in the center wing section. The push-pull tubes from the mixing unit to the spoilers were destroyed by thermal damage. The attach points of the push-pull tubes to the spoiler bell cranks exhibited continuity. The rudder trim was found in the neutral position, and the elevator trim was found in the 2-3 degrees nose-up position. The left seat right rudder pedal was found in the full-forward position.

The left engine propeller blades were found in a feathered position, and the propeller assembly remained attached to the engine. The right propeller blades exhibited bending, twisting, and leading edge gouge damage. An approximately 4-inch piece of one propeller blade tip was separated and was not located. The blade tip separation fracture surfaces were consistent with an overload failure. The right propeller assembly remained attached to the engine. The left and right engines remained partially attached to the airframe.

The landing gear and landing gear jackscrew were found in the extended position. The flap actuator jackscrew measurement corresponded with the flaps being in the 20-degree position.

An autopsy was performed on the pilot by the Office of the Chief Medical Examiner, Oklahoma City, Oklahoma. The autopsy ruled the cause of death as the result of multiple blunt force injuries and the manner of death as an accident. No unusual findings were discovered during the autopsy.

Biological specimens from the pilot's body were forwarded to the FAA's Civil Aerospace Medical Institute for toxicological testing. These specimens tested negative for ethanol and detected the presence of ibuprofen. Ibuprofen is a nonnarcotic analgesic and anti-inflammatory agent used to treat aches and pains, and as an antipyretic to reduce fever.

The NTSB notes that the airplane was not required to have any type of crash-resistant recorder installed. Previous NTSB recommendations have addressed the need for recording information on airplane types such as the one involved in this accident. Recorders can help investigators identify safety issues that might otherwise be undetectable, which is critical to the prevention of future accidents.

On May 6, 2013, the NTSB issued Safety Recommendation A-13-13 and asked the FAA to do the following:

Require all existing turbine-powered, nonexperimental, nonrestricted-category aircraft that are not equipped with a flight data recorder or cockpit voice recorder and are operating under 14 Code of Federal Regulations Parts 91, 121, or 135 to be retrofitted with a crash-resistant flight recorder system. The crash-resistant flight recorder system should record cockpit audio and images with a view of the cockpit environment to include as much of the outside view as possible, and parametric data per aircraft and system installation, all as specified in Technical Standard Order C197, "Information Collection and Monitoring Systems."

On December 10, 2013, the NTSB classified Safety Recommendation A-13-13 "Open—Unacceptable Response" because the FAA stated that it had not found any compelling evidence to require installation of cockpit recording systems as recommended. Accordingly, the FAA reiterated that it planned no further action to mandate flight deck recording systems and considered its actions complete. Despite the FAA's position, the lack of recording systems on aircraft remains an important safety issue, and the NTSB therefore believes that it would be premature to close the recommendation.

There is a great deal more included in the report. You can read the full factual report at the FMI link below.

(NTSB images)

FMI: Full Report

Advertisement

More News

ANN's Daily Aero-Linx (04.16.24)

Aero Linx: International Business Aviation Council Ltd IBAC promotes the growth of business aviation, benefiting all sectors of the industry and all regions of the world. As a non->[...]

Aero-News: Quote of the Day (04.16.24)

"During the annual inspection of the B-24 “Diamond Lil” this off-season, we made the determination that 'Lil' needs some new feathers. Due to weathering, the cloth-cove>[...]

Airborne 04.10.24: SnF24!, A50 Heritage Reveal, HeliCycle!, Montaer MC-01

Also: Bushcat Woes, Hummingbird 300 SL 4-Seat Heli Kit, Carbon Cub UL The newest Junkers is a faithful recreation that mates a 7-cylinder Verner radial engine to the airframe offer>[...]

Airborne 04.12.24: SnF24!, G100UL Is Here, Holy Micro, Plane Tags

Also: Seaplane Pilots Association, Rotax 916’s First Year, Gene Conrad After a decade and a half of struggling with the FAA and other aero-politics, G100UL is in production a>[...]

Airborne-Flight Training 04.17.24: Feds Need Controllers, Spirit Delay, Redbird

Also: Martha King Scholarship, Montaer Grows, Textron Updates Pistons, FlySto The FAA is hiring thousands of air traffic controllers, but the window to apply will only be open for >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC