Researchers Identify Water Rich Meteorite Linked To Mars Crust | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 07.23.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 07.23.14 **
** Airborne 07.21.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 07.21.14 **
** Airborne 07.18.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 07.18.14 **

Mon, Jan 07, 2013

Researchers Identify Water Rich Meteorite Linked To Mars Crust

Object Was Discovered In 2011 In The Sahara Desert

NASA-funded researchers analyzing a small meteorite that may be the first discovered from the Martian surface or crust have found it contains 10 times more water than other Martian meteorites from unknown origins. This new class of meteorite was found in 2011 in the Sahara Desert. Designated Northwest Africa (NWA) 7034, and nicknamed "Black Beauty," it weighs approximately 11 ounces (320 grams). After more than a year of intensive study, a team of U.S. scientists determined the meteorite formed 2.1 billion years ago during the beginning of the most recent geologic period on Mars, known as the Amazonian.

"The age of NWA 7034 is important because it is significantly older than most other Martian meteorites," said Mitch Schulte, program scientist for the Mars Exploration Program at NASA Headquarters in Washington.  "We now have insight into a piece of Mars' history at a critical time in its evolution."

The meteorite is an excellent match for surface rocks and outcrops NASA has studied remotely via Mars rovers and Mars-orbiting satellites. NWA 7034's composition is different from any previously studied Martian meteorite. The research is published in Thursday's edition of Science Express.

"The contents of this meteorite may challenge many long held notions about Martian geology," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "These findings also present an important reference frame for the Curiosity rover as it searches for reduced organics in the minerals exposed in the bedrock of Gale Crater."

NWA 7034 is made of cemented fragments of basalt, rock that forms from rapidly cooled lava. The fragments are primarily feldspar and pyroxene, most likely from volcanic activity. This unusual meteorite's chemistry matches that of the Martian crust as measured by NASA's Mars Exploration Rovers and Mars Odyssey Orbiter.

"This Martian meteorite has everything in its composition that you'd want in order to further our understanding of the Red Planet," said Carl Agee, leader of the analysis team and director and curator at the University of New Mexico's Institute of Meteoritics in Albuquerque. "This unique meteorite tells us what volcanism was like on Mars 2 billion years ago. It also gives us a glimpse of ancient surface and environmental conditions on Mars that no other meteorite has ever offered."

The research team included groups at the University of California at San Diego and the Carnegie Institution in Washington. Experiments were conducted to analyze mineral and chemical composition, age, and water content.

Researchers theorize the large amount of water contained in NWA 7034 may have originated from interaction of the rocks with water present in Mars' crust. The meteorite also has a different mixture of oxygen isotopes than has been found in other Martian meteorites, which could have resulted from interaction with the Martian atmosphere.

Most Martian meteorites are divided into three rock types, named after three meteorites; Shergotty, Nakhla, and Chassigny. These "SNC" meteorites currently number about 110. Their point of origin on Mars is not known and recent data from lander and orbiter missions suggest they are a mismatch for the Martian crust. Although NWA 7034 has similarities to the SNC meteorites, including the presence of macromolecular organic carbon, this new meteorite has many unique characteristics.

"The texture of the NWA meteorite is not like any of the SNC meteorites," said co-author Andrew Steele, who led the carbon analysis at the Carnegie Institution's Geophysical Laboratory. "This is an exciting measurement in Mars and planetary science. We now have more context than ever before to understanding where they may come from."

(Image provided by NASA)

FMI: www.nasa.gov

Advertisement

More News

NBAA Establishes New Weather Subcommittee

FAA Officials On Hand For The Announcement Of The Group NBAA President and CEO Ed Bolen on Monday announced the formation of a new NBAA group focused on improvements in aviation we>[...]

U.S. House Hearing Will Examine State Of U.S. Aviation Manufacturing

Witness List Includes AEA's Blakey, GAMA's Bunce The Aviation Subcommittee of the U.S. House Transportation Committee, chaired by Congressman Frank LoBiondo (R-NJ), will hold a hea>[...]

ANN's 'Who's Who' At Oshkosh: Katherine Tryon

Introducing Staff, Stringers, Videographers, And People Who Make It All Work Anyone who's ever been to Oshkosh knows that there are hundreds of events and activities as well as ten>[...]

Appeals Court Says FAA May Not Prevent Texas EquuSearch From Using Drones

Once Again, A Federal Judges Has Ruled That The FAA Cannot Stop The Use Of Commercial Drones Unless They Are Enforcing Published Regulations ... The FAA Has A Differing Opinion Ear>[...]

ANN's Daily Aero-Linx (07.23.14)

Expert Craft Building or restoring your own airplane, or even considering a homebuilt project? This site allows you to keep a complete online log of your project, complete with not>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC