NASA's GRAIL-A Closing In On The Moon | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Sat, Dec 31, 2011

NASA's GRAIL-A Closing In On The Moon

GRAIL-A Just Hours Away, GRAIL-B Close Behind

NASA's unmanned programs are celebrating the end of 2011 with a return to the Moon. NASA's Gravity Recovery And Interior Laboratory (GRAIL)-A spacecraft is within a few hours of its insertion burn that will place it into lunar orbit.

At the time the spacecraft crossed the milestone at 1:21 p.m. PST Friday (4:21 p.m. EST), the spacecraft was 30,758 miles from the moon. Launched aboard the same rocket on Sept. 10, 2011, GRAIL-A's mirror twin, GRAIL-B, is also closing the gap between itself and the moon. GRAIL-B is scheduled to perform its lunar orbit insertion burn on New Year's Day (Jan. 1) at 2:05 p.m. PST (5:05 p.m. EST).
 
As they close in on the moon, both orbiters move toward the moon from the south, flying nearly directly over the lunar south pole. The lunar orbit insertion burn for GRAIL-A will take approximately 40 minutes to complete and change the spacecraft's velocity by about 427 mph. GRAIL-B's insertion burn - occurring 25 hours later -- will last about 39 minutes and is expected to change its velocity by 430 mph.
 
The insertion maneuvers will place each orbiter into a near-polar, elliptical orbit with an orbital period of 11.5 hours. Over the following weeks, the GRAIL team will execute a series of burns with each spacecraft to reduce their period down to just under two hours. At the start of the science phase in March 2012, the two GRAILs will be in a near-polar, near-circular orbit with an altitude of about 34 miles.
 
 

During the science phase, the moon will rotate three times underneath the GRAIL orbit. The collection of gravity data over one complete rotation (27.3 days) is referred to as a Mapping Cycle. When science collection begins, the spacecraft will transmit radio signals precisely defining the distance between them as they orbit the moon in formation. Regional gravitational differences on the moon are expected to expand and contract that distance. GRAIL scientists will use these accurate measurements to define the moon's gravity field. The data will allow mission scientists to understand what goes on below the surface of our natural satellite. This information will help us learn more about how the moon, Earth and other terrestrial planets formed.
 
NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the GRAIL mission. The Massachusetts Institute of Technology, Cambridge, is home to the mission's principal investigator, Maria Zuber. The GRAIL mission is part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is a division of the California Institute of Technology in Pasadena.

FMI: www.nasa.gov/grail, http://grail.nasa.gov, www.jpl.nasa.gov/news/press_kits/graiLaunch.pdf

Advertisement

More News

ANN's Daily Aero-Term (04.20.24): Light Gun

Light Gun A handheld directional light signaling device which emits a brilliant narrow beam of white, green, or red light as selected by the tower controller. The color and type of>[...]

Aero-News: Quote of the Day (04.20.24)

"The journey to this achievement started nearly a decade ago when a freshly commissioned Gentry, driven by a fascination with new technologies and a desire to contribute significan>[...]

ANN's Daily Aero-Linx (04.21.24)

Aero Linx: JAARS, Inc. For decades now, we’ve landed planes on narrow rivers and towering mountains. We’ve outfitted boats and vehicles to reach villages that rarely se>[...]

Aero-News: Quote of the Day (04.21.24)

"Our driven and innovative team of military and civilian Airmen delivers combat power daily, ensuring our nation is ready today and tomorrow." Source: General Duke Richardson, AFMC>[...]

ANN's Daily Aero-Term (04.21.24): Aircraft Conflict

Aircraft Conflict Predicted conflict, within EDST of two aircraft, or between aircraft and airspace. A Red alert is used for conflicts when the predicted minimum separation is 5 na>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC