NASA Tests X-43A | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Sun, Mar 28, 2004

NASA Tests X-43A

Faster Way To Orbit?

Orbital's Hyper-X Launch Vehicle was successfully tested Saturday, in a flight that originated from NASA's Dryden Flight Research Center located at Edwards Air Force Base (CA). The Hyper-X launch vehicle uses a modified first stage rocket motor, originally designed and flight-proven aboard Orbital's Pegasus space launch vehicle, to accelerate NASA's X-43A air-breathing scramjet to seven times the speed of sound.

Unlike vehicles with conventional rocket engines, which carry oxygen onboard, the air-breathing X-43A scoops and compresses oxygen from the atmosphere using the shape of the vehicle's airframe. This type of propulsion system could potentially increase payload capacity of future launch vehicles and make high-speed passenger travel feasible since no onboard supply of oxidizer would be required.

"We are extremely pleased with the results of the Hyper-X flight," said Ron Grabe, Executive Vice President and General Manager of Orbital's Launch Systems Group. "After several years of detailed analysis, design upgrades and testing to address the factors that contributed to the failure of the program's first flight, it is all the more gratifying to have carried out this successful flight test. This flight was one of the most challenging missions Orbital has ever conducted and demonstrated our ability to take on and tackle the toughest technical challenges."

"Our congratulations go out to NASA and all the partners on this program who persevered to get it right," said Grabe. "We now have our sights set on a successful third mission to provide even more critical data to NASA's research into the field of hypersonic flight and to extend the flight speed record set today to Mach 10."

Flight operations began when NASA's B-52B carrier aircraft took off and flew a predetermined flight path to a point 50 miles off the California coast. The Hyper-X vehicle was released from the B-52 at 2:00 p.m. (PST) approximately 40,000 feet over the Pacific Ocean. Following rocket motor ignition, the Hyper-X Launch Vehicle, carrying the X-43A scramjet, accelerated to a velocity of approximately Mach 7 (or seven times the speed of sound) and reached an altitude of 95,000 feet. Approximately 90 seconds after ignition, with the booster at a precise trajectory condition, the Hyper-X launch vehicle sent commands to the X-43A scramjet, which then separated from the booster.

Early flight results indicate that the X-43A stabilized, ignited its scramjet and provided flight data back to NASA engineers. Following the engine burn, the X-43A executed a number of aerodynamic maneuvers during its eight-minute coast to an ocean impact approximately 450 miles from the launch point. After separation, the spent booster impacted the ocean in a pre-determined splash area.

FMI: BBC Video Of Test Mission

Advertisement

More News

ANN's Daily Aero-Term (04.20.24): Light Gun

Light Gun A handheld directional light signaling device which emits a brilliant narrow beam of white, green, or red light as selected by the tower controller. The color and type of>[...]

Aero-News: Quote of the Day (04.20.24)

"The journey to this achievement started nearly a decade ago when a freshly commissioned Gentry, driven by a fascination with new technologies and a desire to contribute significan>[...]

ANN's Daily Aero-Linx (04.21.24)

Aero Linx: JAARS, Inc. For decades now, we’ve landed planes on narrow rivers and towering mountains. We’ve outfitted boats and vehicles to reach villages that rarely se>[...]

Aero-News: Quote of the Day (04.21.24)

"Our driven and innovative team of military and civilian Airmen delivers combat power daily, ensuring our nation is ready today and tomorrow." Source: General Duke Richardson, AFMC>[...]

ANN's Daily Aero-Term (04.21.24): Aircraft Conflict

Aircraft Conflict Predicted conflict, within EDST of two aircraft, or between aircraft and airspace. A Red alert is used for conflicts when the predicted minimum separation is 5 na>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC